Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.031
Filtrar
1.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
2.
Science ; 384(6692): eadn9560, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603491

RESUMO

Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.


Assuntos
Citoesqueleto de Actina , Actinas , Forminas , Citoesqueleto de Actina/química , Actinas/química , Microscopia Crioeletrônica , Forminas/química , Forminas/genética , Profilinas/química , Mutação , Schizosaccharomyces
3.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , 60634 , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
4.
Cell Rep ; 43(3): 113901, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446663

RESUMO

Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.


Assuntos
Adenosina Trifosfatases , Segregação de Cromossomos , Complexos Multiproteicos , Schizosaccharomyces , Proteínas de Ligação a DNA/genética , Cromatina , Cromossomos , DNA , Schizosaccharomyces/genética , RNA Polimerase II/genética , Mitose , Proteínas de Ciclo Celular/genética
5.
Genes Dev ; 38(3-4): 189-204, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479839

RESUMO

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Heterocromatina/genética , Replicação do DNA/genética , DNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Epigênese Genética
6.
Arch Microbiol ; 206(4): 155, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480568

RESUMO

Glucose, which plays an essential role in carbon and energy metabolism in eukaryotes, is vital in directing various energy-consuming cellular processes. In S. cerevisiae, transcription factors involved in regulating hexose transporters and their mechanisms of action under different carbon sources were revealed in detail. However, there is limited information on these processes in S. pombe. In this study, the effect of SPCC320.03 (named SpRgt1), the ortholog of ScRgt1 whose molecular mechanism is known in detail in S. cerevisiae, on the transcriptional regulation of hexose transporters (ght1-8) dependent on different carbon sources was investigated. We measured the transcript levels of ght1-8 using the qPCR technique and performed relative evaluation in S. pombe strains (parental, rgt1 deleted mutant, rgt1 overexpressed, and vectoral rgt1 carrying mutant). We aimed to investigate the transcriptional changes caused by the protein product of the rgt1 (SPCC320.03) gene in terms of ght1-8 genes in strains that are grown in different carbon sources (2% glucose, 2% glycerol + 0.1% glucose, and 2% gluconate). Here, we show that SpRgt1 is involved in the regulation of the ght3, ght4, ght6, and ght7 genes but that the ght1, ght2, ght5, and ght8 gene expression vary depending on carbon sources, independently of SpRgt1.


Assuntos
Schizosaccharomyces , Carbono/metabolismo , DNA , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514187

RESUMO

RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Código das Histonas , Histonas/genética , Histonas/metabolismo , Resistência a Múltiplos Medicamentos
9.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523261

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Fuso Acromático/metabolismo
10.
Open Biol ; 14(3): 230440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442865

RESUMO

Microtubule organization and reorganization during the cell cycle are achieved by regulation of the number, distribution and activity of microtubule-organizing centres (MTOCs). In fission yeast, the Mto1/2 complex determines the activity and distribution of cytoplasmic MTOCs. Upon mitosis, cytoplasmic microtubule nucleation ceases; inactivation of the Mto1/2 complex is triggered by Mto2 hyperphosphorylation. However, the protein kinase(s) that phosphorylates Mto2 remains elusive. Here we show that a conserved signalling network, called MOR (morphogenesis Orb6 network) in fission yeast, negatively regulates cytoplasmic MTOCs through Mto2 phosphorylation to ensure proper microtubule organization. Inactivation of Orb6 kinase, the most downstream MOR component, by attenuation of MOR signalling leads to reduced Mto2 phosphorylation, coincident with increased number of both Mto2 puncta and cytoplasmic microtubules. These defects cause the emergence of uncoordinated mitotic cells with cytoplasmic microtubules, resulting in reduced spindle assembly. Thus, the regulation of Mto2 by the MOR is crucial for cytoplasmic microtubule organization and contributes to reorganization of the microtubule cytoskeletons during the cell cycle.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ciclo Celular , Mitose , Fosforilação , Microtúbulos , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe/genética
11.
Yeast ; 41(3): 108-127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450805

RESUMO

Schizosaccharomyces japonicus Yukawa et Maki (1931) and Schizosaccharomyces versatilis Wickerham et Duprat (1945) have been treated as varieties of S. japonicus or as conspecific, based on various approaches including mating trials and nDNA/nDNA optical reassociation studies. However, the type strains of S. japonicus and S. versatilis differ by five substitutions (99.15% identity) and one 1-bp indel in the sequences of the D1/D2 domain of the 26S rRNA gene, and 23 substitutions (96.3% identity) and 31-bp indels in the sequences of internal transcribed spacer (ITS) of rRNA, suggesting that they may not be conspecific. To reassess their taxonomic status, we conducted mating trials and whole-genome analyses. Mating trials using the type strains showed a strong but incomplete prezygotic sterility barrier, yielding interspecies mating products at two orders of magnitude lower efficiency than intraspecies matings. These mating products, which were exclusively allodiploid hybrids, were unable to undergo the haplontic life cycle of the parents. We generated chromosome-level gap-less genome assemblies for both type strains. Whole genome sequences yielded an average nucleotide identity (ANI) of 86.4%, indicating clear separation of S. japonicus and S. versatilis. Based on these findings, we propose the reinstatement of S. versatilis as a distinct species (holotype strain: CBS 103T and ex-types: NRRL Y-1026, NBRC 1607, ATCC 9987, PYCC 7100; Mycobank no.: 847838).


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Filogenia , Análise de Sequência de DNA
12.
Yeast ; 41(3): 73-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451028

RESUMO

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Telômero/genética , Centrômero/genética
13.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448160

RESUMO

In meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase I. The conserved meiosis-specific kinetochore protein meikin (Moa1 in fission yeast) associates with polo-like kinase: Plo1 and regulates both mono-orientation and cohesion protection. Although the phosphorylation of Rec8-S450 by Plo1 associated with Moa1 plays a key role in cohesion protection, how Moa1-Plo1 regulates mono-orientation remains elusive. Here, we identify Plo1 phosphorylation sites in the cohesin subunits, Rec8 and Psm3. The non-phosphorylatable mutations at these sites showed specific defects in mono-orientation. These results enabled the genetic dissection of meikin functions at the centromeres.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinetocoros , Fosforilação , 60634 , Meiose , Centrômero , Schizosaccharomyces/genética , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/genética
14.
EMBO J ; 43(8): 1618-1633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499788

RESUMO

Cellular processes are subject to inherent variability, but the extent to which cells can regulate this variability has received little investigation. Here, we explore the characteristics of the rate of cellular protein synthesis in single cells of the eukaryote fission yeast. Strikingly, this rate is highly variable despite protein synthesis being dependent on hundreds of reactions which might be expected to average out at the overall cellular level. The rate is variable over short time scales, and exhibits homoeostatic behaviour at the population level. Cells can regulate the level of variability through processes involving the TOR pathway, suggesting there is an optimal level of variability conferring a selective advantage. While this could be an example of bet-hedging, but we propose an alternative explanation: regulated 'loose' control of complex processes of overall cellular metabolism such as protein synthesis, may lead to this variability. This could ensure cells are fluid in control and agile in response to changing conditions, and may constitute a novel organisational principle of complex metabolic cellular systems.


Assuntos
Biossíntese de Proteínas , Schizosaccharomyces
15.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526189

RESUMO

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Adenosina Trifosfatases/metabolismo , Extratos Vegetais/metabolismo
16.
Open Biol ; 14(2): 230414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320620

RESUMO

In this work, we have developed an expansion microscopy (ExM) protocol that combines ExM with photoactivated localization microscopy (ExPALM) for yeast cell imaging, and report a robust protocol for single-molecule and expansion microscopy of fission yeast, abbreviated as SExY. Our optimized SExY protocol retains about 50% of the fluorescent protein signal, doubling the amount obtained compared to the original protein retention ExM (proExM) protocol. It allows for a fivefold, highly isotropic expansion of fission yeast cells, which we carefully controlled while optimizing protein yield. We demonstrate the SExY method on several exemplary molecular targets and explicitly introduce low-abundant protein targets (e.g. nuclear proteins such as cbp1 and mis16, and the centromere-specific histone protein cnp1). The SExY protocol optimizations increasing protein yield could be beneficial for many studies, when targeting low abundance proteins, or for studies that rely on genetic labelling for various reasons (e.g. for proteins that cannot be easily targeted by extrinsic staining or in case artefacts introduced by unspecific staining interfere with data quality).


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Microscopia , Proteínas de Transporte/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética
17.
J Biol Chem ; 300(3): 105718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311173

RESUMO

Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.


Assuntos
Proteínas de Ligação a DNA , Longevidade , Fosfatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Regulação Fúngica da Expressão Gênica , Longevidade/genética , Fosfatos/deficiência , RNA de Transferência/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcriptoma , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
J Biol Chem ; 300(3): 105754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360270

RESUMO

KDELR (Erd2 [ER retention defective 2] in yeasts) is a receptor protein that retrieves endoplasmic reticulum (ER)-resident proteins from the Golgi apparatus. However, the role of the KDELR-mediated ER-retrieval system in regulating cellular homeostasis remains elusive. Here, we show that the absence of Erd2 triggers the unfolded protein response (UPR) and enhances mitochondrial respiration and reactive oxygen species in an UPR-dependent manner in the fission yeast Schizosaccharomyces pombe. Moreover, we perform transcriptomic analysis and find that the expression of genes related to mitochondrial respiration and the tricarboxylic acid cycle is upregulated in a UPR-dependent manner in cells lacking Erd2. The increased mitochondrial respiration and reactive oxygen species production is required for cell survival in the absence of Erd2. Therefore, our findings reveal a novel role of the KDELR-Erd2-mediated ER-retrieval system in modulating mitochondrial functions and highlight its importance for cellular homeostasis in the fission yeast.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Schizosaccharomyces , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
19.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376141

RESUMO

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Saccharomyces cerevisiae/genética , DNA/metabolismo , Nucleossomos/metabolismo
20.
Sci Total Environ ; 922: 171253, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408667

RESUMO

Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.


Assuntos
Benzimidazóis , Carbamatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/farmacologia , Rotenona/toxicidade , Rotenona/metabolismo , Hidroxiureia/metabolismo , Hidroxiureia/farmacologia , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...